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SEE (Software for the Exploration of Exploration) is
a visualization and analysis tool designed to study open-
field behavior in rodents (Drai & Golani, 2001), using
the time series of path coordinatesexported from any au-
tomatic tracking system. SEE was specially developed
on the basis of ethologicallyoriented studies (Benjamini,
Drai, Elmer, Golani, & Kafkafi, 2001; Drai, Benjamini,
& Golani, 2000; Drai, Kafkaf i, Benjamini, Elmer, &
Golani, 2001; Eilam & Golani, 1989; Golani, Benjamini,
& Eilam, 1993; Kafkafi, Lipkind, et al., in press; Kafkafi,
Mayo, Drai, Golani, & Elmer, 2001; Kafkafi, Pagis, et al.,
in press; Tchernichovski, Benjamini, & Golani, 1996,
1998; Tchernichovski & Golani, 1995) in rats and mice.
The behavior patterns it is based on have also been proved
to be useful in neurobehavioral studies (Cools, Ellen-
broek, Gingras, Engbersen, & Heeren, 1997; Gingras &
Cools, 1997; Whishaw, Cassel, Majchrzak,Cassel, & Will,
1994; Whishaw, Hines, & Wallace, 2001). In contrast to
the conventional view of open-field behavior as a rather
stochastic phenomenon, these studies showed that it is
highly structured, consisting of typical behavior patterns.
The most basic of these patterns, which can be regarded
as the building blocks of open-field behavior, are linger-
ing episodes (stops) and progression segments (Drai et al.,

2000; Kafkafi et al., 2001). Although SEE can readily be
used to study a path as a continuous series, its main power
lies in treating a path as a string of discrete units, each be-
longing to one of these two behavior patterns.

SEE is a sublanguage, or package, residing within the
powerful, flexible programming environment of Mathe-
matica (by Wolfram Research; see Wolfram, 1999), and
can employ all the sophisticated tools available in Math-
ematica for its computations. Here are a few simple ex-
pressions in SEE that demonstrate the use of the lan-
guage. As with any expression of Mathematica, pressing
Shift+Enter immediately evaluates the expression and re-
turns the result:

Length[movesegments]

The MathematicafunctionLength[list] returns the num-
ber of members in the list—in the above case, the number
of progression segments in the currently loaded session:

movesegments[[1]]

The Mathematica expression of the form list[[k]] gives
the kth member of the list—in the above case, the first
progression segment in the loaded session—in the format
{start time, end time}:

SegmentCoords[movesegments[[1]]]

SegmentCoords[segment] is a function defined in SEE
that returns the list of coordinates in a segment, either a
progression segment or a lingering episode:

See[PathPlot[movesegments[[1]]]]

PathPlot[segment] creates a graphic object of the path
in this segment. See[graphics object] displays this object
in a visual representation of the arena. Evaluating the ex-
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pression above thus returns the path plot of the first seg-
ment in the arena (Figure 1).

Any function that is viable for each member of a list
can be done over the whole list, using Map[ function, list].
The expression

See[Map[PathPlot,movesegments]]

thus returns the path plots of all progression segments
(Figure 2).

In addition to its flexible and elegant syntax, Mathe-
matica contains hundreds of mathematical functions,
many of them employingpowerful numerical tools, which
can readily be employed for analysis. For example,

Fourier[SegmentCoords[movesegments[[1]]]]

returns the Fourier spectrum analysis of the coordinates
of the first progression segment.

The examplesabovedemonstrate how the vocabularyof
SEE can be used in conjunction with the vocabulary and
syntax of Mathematica to build an unlimited number of
expressions, ranging from simple to very complex, ad-
dressing many desirable aspects of the spatial behavior
(for a more elaborate and complete description, see Drai
& Golani, 2001). It was recently demonstrated that SEE
can be employed for behavioral phenotyping of mice
(Drai et al., 2001; Kafkafi, Lipkind, et al., in press).

Behavioral phenotyping is the field in which behavior
patterns are characterized in order to associate them with
particular gene loci in specific genotypes. In recent years,
behavioral phenotyping has been increasingly employed
in mouse studies, because of the unique technical possi-
bilities for generating reproducible genotypes of this
mammal (inbred strains) and manipulating them up to
the level of single genes (single-site mutants, or knock-
outs). The need for mouse behavioral phenotyping has

resulted in the design of batteries including many be-
havioral and physiological tests (e.g., Crawley, 2000;
Crawley et al., 1997;Rogers et al., 1999;Tarantino,Gould,
Druhan, & Bucan, 2000). A critical problem with many of
the current behavioral tests, however, is that their results
are diff icult to replicate in other laboratories, despite
careful standardization of conditions (Crabbe, Wahlsten,
& Dudek, 1999). It was recently suggested that solving
the replicabilityproblem by even more rigorous standard-
ization is not feasible and that it is preferable, instead, to
choose behavioral tests that yield the most stable results
(Wahlsten, 2001). Extending this suggestion further, we
offered to design new behavioral methods and endpoints
explicitly for improved discrimination and replicability
and increased resistance to laboratory factors. This can
be done efficiently if the raw path coordinates of open-
field sessions from many experiments and laboratories
are stored in a database, which can be explored with spe-
cialized algorithms. Instead of postulating a priori that a
certain measure of open-field behavior is relevant, it is
thus possible to explore many different optional mea-
sures and to select those that show high discrimination
and replicability over most of the database. As the data-
base increases with the accumulation of experiments,
genotypes,and laboratories, these measures can be further
modified, so as to make them increasinglydiscriminative,
general, and resistant to laboratory factors. This approach
was demonstrated in Kafkafi, Pagis, et al. (in press) by
designing a new measure of a specific behavior pattern,
the darting behavior, which discriminates two common
inbred strains, C57BL/6 and DBA/2, reliably across
three laboratories, different protocol conditions, and
even under the effect of cocaine.

To facilitate the use of SEE analysis within this frame-
work, I programmed two additional Mathematica pack-

Figure 1. The path plot of a single progression segment of a
mouse. The actual diameter of the arena is 2.5 m.

Figure 2. The path plot of all progression segments of 1 mouse,
during a 30-min session.
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ages that can be used in conjunction with the regular
SEE package. The Experiment Explorer package is used
to define a database of path coordinates, including sev-
eral experiments, and to enable any SEE or Mathematica
expression to be calculated in any desired subsection of
this database. The Endpoint Manager package is used to
define measures (endpoints), calculate them in any se-
lected subsection of this database, and use them as prim-
itives in the design of more complex endpoints. The op-
eration of these two packages will be demonstrated in the
next two sections, with an emphasis on this approach.The
data used for this demonstration were taken from our ex-
periments comparing the mouse inbred strains C57BL/6J
(C57) and DBA/2J (DBA) across three laboratories (Kaf-
kafi, Lipkind, et al., in press; Kafkafi, Pagis, et al., in
press).

Within the context of this study, a session means an
unbroken track of a locomotor path of a single animal—
in the case of our setup, exploring a large (~2.5-m radius)
arena for a predetermined duration (up to several hours).
A group is a list of sessions within an experiment, usually
with a single controlled variable being changed—that is,
several different sessions of the same animal or several
animals (one session each) of the same genotype or with
the same treatment. An experiment is a list of groups that
were tracked in similar conditions(location, time, handling
protocol, tracking parameters, etc.). An endpoint is some
measure (i.e., a defined variable) used to evaluate the
properties of the behavior. We use this term because it is
part of the jargon used in behavioral phenotyping, al-
though it is not exactly appropriate within our approach,
where any endpointmay be modified or used as the basis
for more elaborate endpoints.

The Experiment Explorer
In the original SEE package (Drai & Golani, 2001), a

single session had to be loaded in order to be queried.
Expressions such as those demonstrated in the introduc-
tion returned the result for this currently loaded session.
Querying many sessions and many experiments can still
be done this way, but it is cumbersome and does not en-
courage the user to explore. The Experiment Explorer
package was thus developed to facilitate exploring, by
using SEE, any part of a database including several ex-
periments, each containing several groups and several
sessions in each group. For example,

Length[movesegments]~InSession~{c57,1}
~InExperiment~“C57 vs DBA in MPRC”

returns the number of progression segments in the first
session of the group named C57 in the experiment
named “C57 vs DBA in MPRC.” The expression
Length[movesegments] is only an example here and can
be substituted for any SEE or Mathematica expression,
however complex, that is viable for a single session. For
example,

See[Map[PathPlot,movesegments]]~InSession~{c57,
1}~InExperiment~“C57 vs DBA in MPRC”

will return the path plot of this session, as in Figure 2. It
is also possible to execute, in each session, a list of many
commands. A similar syntax is used to access any other
desirable subsection of the database. For example, the
expression

Length[movesegments]~MapOverGroups
~experimentGroups~MapOverExperiments~{“C57
vs DBA in MPRC”,“C57 vs DBA in TAU”}

returns a list of the number of progression segments in
all sessions in all groups in both experiments, “C57 vs
DBA in MPRC” and “C57 vs DBA in TAU.”

It is also possible to address specific parts of sessions,
using the functions “InTimeSlice” and “ByTimeBin” in-
terchangeably with all the other functions. For example,

Length[movesegments]~ByTimeBin~{5
minutes}~InSession~{c57, 1}~InExperiment~“C57
vs DBA in MPRC”

returns a list of the numbers of progression segments in
time bins of 5 min in this session.

In order to be added to the database, each experiment
shouldbe definedonceby the user. This definition includes
the names of experimental groups and the directories in
the computer where the data files are located. The list ex-
perimentGroups that we used in several of the examples
above is defined as the list of basic groups in the exper-
iment, but the user is free to add any additional ad hoc
grouping over the sessions in an experiment and to use
it with the same syntax as that applied to experiment-
Groups.

The user may also formulate any desirable variable
that is specific to the experiment and include it in the ex-
periment definition. These variables will then get the ap-
propriate values whenever this experiment is addressed
by functions such as InExperiment and MapOverExper-
iments and can thus be used in queries. Several such ex-
amples of experiment-specific variables that are cur-
rently employed are arenaCenter, arenaRadius, and
sessionDuration.

Almost any desirable query can thus be formulated
over any part of a database, using the flexible language
of Mathematica interchangeably with the additional vo-
cabulary of the SEE and Experiment Explorer packages.
This vocabulary was designed to be user friendly and as
natural as possible, so the meaning of each expression
can usually be discerned, at least approximately, from a
first reading. The use of a specialized language to define
queries might seem to involve a lot of typing by the user,
but this problem is mostly solved in Mathematica by
using the automatic completion of defined words and by
palettes of the required functions and variables, so they
can be inserted in any desired place or wrapped around
any desired expression by a click of a mouse (the elec-
tronic one, of course).

The Endpoint Manager
In order to facilitate our approach, it is important that

any expression, once found useful for quantifying a cer-
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tain desirable property of the behavior, could be imme-
diately defined as a new endpoint and become available
for use, like any previously defined endpoint, in the pre-
viously demonstrated commands. The Endpoint Manager
package was programmed to achieve this in conjunction
with the Experiment Explorer and SEE packages. In ad-
dition, this package supplies graphical and statistical
tools for studying endpoint results from many sessions,
groups, and experiments.

Defining a new endpoint is done by using the function
endpointDefinition. Any expression in SEE or Mathe-
matica can be defined as an endpoint. For example, the
expression used in some of the examples in the previous
sections, Length[movesegments] (the number of mem-
bers in the list movesegment—i.e., the number of pro-
gression segments), can be defined as the endpoint
NumberOfProgressionSegments:

EndpointDefinition[NumberOfProgression
Segments]:= Length[movesegments]

A slightly more complex example is

EndpointDefinition[DistanceTraveled]:= Apply[Plus,
Map[Activity,segments]]

In this example, we employed built-in functions of Math-
ematica (Apply, Plus, and Map) and a list and a function
defined in SEE (segments and Activity). It is possible to
define endpoints of arbitrary complexity by using any
number of previously defined functions and variables.

An expression of the form EndpointName[ ] is used to
compute the value of the endpoint in any subsection of
the data, using the same syntax as that in the previous
section. Such an expression can also be combined inter-
changeably with all other expressions of SEE and Math-

ematica, including other endpoints. In what follows, I
will demonstrate the use of Endpoint Manager and Ex-
periment Explorer in deriving a new endpoint capturing
a behavior pattern that was found to discriminate C57
and DBA mice across laboratories (Kafkafi, Pagis, et al.,
in press). I will start with a standard endpoint of SEE,
the maximal speed to duration ratio (MSDR), which
computes the ratio between the maximal speed attained
in a progression segment and its duration (Kafkafi, Lip-
kind, et al., in press). It is thus a measure of the acceler-
ation, or abruptness, of movement in this segment. The
function returns the median of this value over all seg-
ments in the session. The results in this endpoint across
three laboratories can be displayed using a graphics
function of Endpoint Manager, MeanSEPlot, and the
usual syntax of Experiment Explorer:

MeanSEPlot[
MaxSpeedToDurationRatio[]~MapOverGroups
~experimentGroups~MapOverExperiments~{“C57
vs DBA in NIDA”,“C57 vs DBA in MPRC”,“C57 vs
DBA in TAU”}]

Evaluating this expression will return the graph in
Figure 3. Using the function TwoWayAnova instead of
MeanSEPlot in the above expression will return an
analysis of variance table of strains by laboratories for
the same data. As can be seen in Figure 3, MSDR highly
discriminates the two strains [F(1,45) = 109.1, p <
.0001], but its replicability across laboratories is low, as
is shown by a significant laboratory effect [F(2,45) =
30.5, p < .0001].

Another standard endpoint in SEE is lingering mean
speed (LMS). This endpoint divides the distance traveled
in the lingering mode (i.e., within stops) by the total du-

Figure 3. Maximal speed-to-duration ratio: group means and standard errors for C57 and DBA
over three experiments in different laboratories (1, 2, and 3). Numbers label single sessions accord-
ing to their order in the group.
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ration of lingering. This endpoint thus gives indication
of the mobility inside stops, which includes local move-
ments, such as scanning, rearing, and sideways steps
(Kafkafi, Lipkind, et al., in press). Using MeanSEPlot
with the LMS across the three laboratories returns Fig-
ure 4, and using TwoWayAnova confirms that LMS also
discriminates the strains [F(1,45) = 36.25, p < .0001] but

is not well replicated across laboratories [F(2,45) = 4.8,
p < .013].

It is also possible, however, to look at the relation be-
tween these two endpoints. The expression

CorrelationPlot[
{LingeringMeanSpeed[],MaxSpeedToDuration
Ratio[]}
~MapOverGroups~experimentGroups~MapOver
Experiments~
{“C57 vs DBA in NIDA”,“C57 vs DBA in MPRC”,
“C57 vs DBA in TAU”}]

returns Figure 5.
Note that the combination of both endpoints discrim-

inates the two genotypes across all three laboratories bet-
ter than does each endpoint by itself. Moreover, within
each genotype, the laboratories are similarly ordered and
the group medians are approximately aligned along an
imagined ray projecting from the coordinate (0, 10). The
results all lie within a range of approximately4.5 cm/sec
for the LMS and 35 cm/sec2 for the MSDR. As was elab-
orated in Kafkafi, Pagis, et al. (in press), such a rela-
tionship may be captured by defining a new endpoint
termed darting (DART):

DART=ArcTan[(MSDR 2 10)/35 / (LMS /4.5)].

Such a definition can be readily implemented in the
Endpoint Manager:

EndpointDefinition[DART]:=
ArcTan[(MaxSpeedToDurationRatio[]210)/35/
(LingeringMeanSpeed[]/4.5)]

After this definition, DART can be used in any com-
mand that is viable for predefined endpoints. Applying
MeanSEPlot to DART returns Figure 6, showing both

Figure 4. Lingering mean speed: group means and standard errors for C57 and DBA over three
experiments in different laboratories (1, 2, and 3). Numbers label single sessions according to their
order in the group.

Figure 5. A correlation plot of the endpoints Lingering-
MeanSpeed and MaxSpeedToDurationRatio in two genotypes
(C57 and DBA) over three experiments in different laboratories
(1, 2, and 3). Ellipsoids include 75% of group results (i.e., indi-
vidual sessions, one session per animal). Group titles are centered
on the group medians.
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high strain discrimination and high replicability across
laboratories. This is tested by applying TwoWayAnova
to DART [F(1,45) = 128.9,p < .0001, for strains; F(2,45) =
0.18, p = .83, for laboratories; and F(2,45) = 1.0, p = .37,
for the strain 3 laboratory interaction]. The experi-
menters’ subjective observations agree that DBA mice,
which have a high DART index, tend to freeze during
stops and then shoot very quickly and abruptly to the
next stop, where they freeze again. Such behavior is typ-
ical of wild rodents in their natural habitat and may also
constitute a model for genetic inclination to anxiety or
stress. Note that it is still required that any new endpoint
be tested with data that were not used for its design.
DART was indeed found to have high discrimination and
replicability in three additional experiments (Kafkafi,
Pagis, et al., in press).

Discussion
In order to minimize manual labor and subjective

judgment, researchers in behavior genetics and other
fields of the behavioral neurosciences strive to automate
behavioral tests. As ethologists, researchers’ main intu-
ition about behavior is that it consists of patterns with
specific structures that usually can be identified imme-
diately by the experienced observer. When examined
closely, however, these structures are almost always
found to be complex and difficult to capture algorithmi-
cally. To take a typical example, the algorithmic defini-
tion of the seemingly trivial pattern stopping (Drai et al.,
2000) took almost 2 years to be developed and is still
being fine-tuned on the basis of ongoing results. In the
several years’ experience with the programming of al-
gorithms for automatic categorization and recognitionof
behavior patterns, we found that it is very easy to fail be-
cause the inherent structure of the pattern has not been

properly understood or even because of simple reasons,
such as not using the right transformation. In such fre-
quent cases of failure, the algorithm is most likely to
measure noise and artifacts, and it should not be sur-
prising if many genotypes cannot be differentiated and
genotype differences cannot be reproduced in other lab-
oratories, despite rigorous standardization (Crabbe et al.,
1999). In order to handle this difficult task of algorith-
mically recognizing complex structures of behavior, it is
much preferable to use flexible measurement systems
that let the user visualize the behavior and to reprogram
them accordingly.SEE was programmed with such flex-
ibility in mind. In comparison, the analysis modules of
most photobeam cages and tracking systems were de-
signed by professional programmers, not by students of
behavior, and they give the user little or no possibility of
changing their programming.

The Experiment Explorer and Endpoint Manager pre-
sented here demonstrate how readily the functionality of
SEE can be extended. Experiments conducted in several
laboratories provide a unique opportunity for designing
bettermeasures, since they enable one to extract the robust
aspects of behavior—those that depend on factors of in-
terest, such as genotype or treatment—and to disregard
aspects that depend on local, idiosyncratic factors, such
as measurement artifacts or small differences in hous-
ing. Hence, designing endpoints from multilaboratory
studies has a double benefit. For behavior geneticists and
psychopharmacologists, it supplies measures that can be
expected to better discriminate different genotypes in
other laboratories. For ethologists, it supplies measures
that properly and robustly capture innate behavior pat-
terns and thus are more appropriate for the study of be-
havior in many other situations. The Experiment Ex-
plorer and Endpoint Manager were thus designed to

Figure 6. DART: group means and standard errors for C57 and DBA over three experiments in differ-
ent laboratories (1, 2, and 3). Numbers label single sessions according to their order in the group.
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apply SEE to exploring a database of path coordinates
from many experiments over many laboratories. For this,
they have the following properties, some of which were
demonstrated in the previous sections: (1) Any expres-
sion of SEE can be applied to any part of the database,
using the same simple and intuitive syntax; (2) the user
can easily add experiments to the database; (3) the user
can easily define any alternative grouping in an experi-
ment and then use it the same way the predefined group-
ing is used; (4) the user can easily define and set any
experiment-specific variables, which will be then avail-
able for use in SEE expressions; (5) many established
behavioral endpoints are already available for queries,
using the same query format as that in the introduction;
(6) endpoints can be combined with other endpoints or
any other expression to generate complex queries; (7) any
expression, including a combination of current end-
points, can be easily defined as a new endpoint, which
can then be used the same way as predefined endpoints;
(8) endpoint results can be visualized and statistically
analyzed using specialized functions or the many tools
available in Mathematica; and (9) the syntax is as intu-
itive as possible, so even a novice user can usually discern
the meaning of an expression, at least approximately,
from a first reading.

The approach that is advocated here is reminiscent of
the approach that has been successfully employed in
bioinformatics during recent years (e.g., Attwood, 2000;
Pitt et al., 2001). The two components of this approach
are (1) a database that includes the raw data (in this case
the path coordinates in an open-field arena) from many
experiments, conducted in several different laboratories,
where increasing the size and scope of this databaseshould
directly increase the potential power of the produced
measures, and (2) software for addressing any desirable
subsection of this database and performing desirable com-
putations over it, so as to recognize recurring patterns.

The path of the animal in the arena, in analogy to the
base sequence of a DNA strand, is considered here as a
structured and information-rich sequence that can be
stored and reanalyzed. As in molecular genetics, the seg-
mentation of this series into discrete and meaningful
units (in our case, lingering episodes and progression
segments) highly facilitates the analysis. Each of these
units has simple properties, such as the distance tra-
versed, duration, maximal speed, and so on, that can be
used for analysis, and the animal usually performs hun-
dreds of them during the session, providing a large sam-
ple size for statistical analysis. Another possible advan-
tage of this approach is that many experimenters can
contribute data to the database,whereas many data analy-
sis specialists can study it without having to conduct their
own experiments. Any progress in the design of new
endpoints can be immediately employed by the experi-
menters in order to design new experiments and to reeval-
uate old experiments. This approach is, thus, more suit-
able for tackling the inherent complexity of behavioral
phenotypes. Our database currently contains about 20
experiments, conducted in three laboratorieswith differ-

ent arenas, and includes 13 genotypes and hundreds of
individual animals. The approach was practically dem-
onstrated in Kafkafi, Lipkind, et al. (in press) and Kaf-
kafi, Pagis, et al. (in press).

Behavior geneticists and psychopharmacologists are
naturally apprehensive about their ability to learn the use
of Mathematica and SEE in a short time. In our experi-
ence, students with little or no previous programming
experience (including the author) were able to start
working with Mathematica and SEE almost immedi-
ately, by using given examples and substituting in them
the desired groups, experiments, endpoints, and so on.
These students learned the use of the Mathematica lan-
guage while working with it and, after several months,
were able to program complex and powerful algorithms
of their own. The interactive nature of Mathematica en-
courages novice users to scale up their programming by
combining and transforming simple expressions into in-
creasingly more elaborate ones. The elegance and gen-
erality of the syntax (which I aspired to follow in the
packages presented here) educate the user in mathemat-
ical thinking without being overly didactic.

The single disadvantage of SEE stems from the same
property of Mathematica that endows it with its unique
advantages—that is, being a noncompilable language.
This means that SEE is not a stand-alone program but re-
quires Mathematica in order to run. A simple stand-
alone program for calculating a set of endpoints is thus
under way. The translation of endpoint algorithms de-
veloped in SEE into a compilable language, such as
C++, is straightforward but still requires programming
knowledge of this language. This stand-alone program,
however, is designed to be a simple tool for conducting
automated behavioral tests and does not include the vi-
sualization, analysis, database handling, and develop-
ment capabilities presented here. For such capabilities,
the Mathematica environment is necessary and practi-
cally irreducible. For the task of continuousdevelopment
of measures by students of behavior, rather than by pro-
fessional programmers, SEE and its extensions thus con-
stitute the best alternative.
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